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a b s t r a c t

We present numerical schemes for the incompressible Navier–Stokes equations (NSE) with
open and traction boundary conditions. We use pressure Poisson equation (PPE) formula-
tion and propose new boundary conditions for the pressure on the open or traction bound-
aries. After replacing the divergence free constraint by this pressure Poisson equation, we
obtain an unconstrained NSE. For Stokes equation with open boundary condition on a sim-
ple domain, we prove unconditional stability of a first order semi-implicit scheme where
the pressure is treated explicitly and hence is decoupled from the computation of velocity.
Using either boundary condition, the schemes for the full NSE that treat both convection
and pressure terms explicitly work well with various spatial discretizations including spec-
tral collocation and C0 finite elements. Moreover, when Reynolds number is of Oð1Þ and
when the first order semi-implicit time stepping is used, time step size of Oð1Þ is allowed
in benchmark computations for the full NSE. Besides standard stability and accuracy check,
various numerical results including flow over a backward facing step, flow past a cylinder
and flow in a bifurcated tube are reported. Numerically we have observed that using PPE
formulation enables us to use the velocity/pressure pairs that do not satisfy the standard
inf–sup compatibility condition. Our results extend that of Johnston and Liu [H. Johnston,
J.-G. Liu, Accurate, stable and efficient Navier–Stokes solvers based on explicit treatment of
the pressure term. J. Comp. Phys. 199 (1) (2004) 221–259] which deals with no-slip bound-
ary conditions only.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Consider the Navier–Stokes equations (NSE) for incompressible fluid flow in X � Rmðm P 2Þ
@tuþ u � ruþrp ¼ mDuþ f in X; ð1Þ
r � u ¼ 0 in X: ð2Þ
Here u is the fluid velocity, p the pressure, and m ¼ 1=Re is the kinematic viscosity coefficient. Assume @X ¼ C1 [ C2. Suppose
we are given velocity u on C1 and are given pseudo-traction m@nu� pn on C2, namely,
u ¼ g1 on C1; ð3Þ
m@nu� p n ¼ g2 on C2; ð4Þ
. All rights reserved.
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where @nu ¼ ðn � rÞu ¼ ðruÞn ¼ nj@jui and n is the outward normal. In this paper, we call (4) the open boundary condition.
In some situation, instead of (4), one might be given the force acting on C2 (equals to stress times the normal vector of C2)
which we call the traction boundary condition:
mðruþru>Þn� p n ¼ g2 on C2: ð5Þ
In finite element computations, to incorporate the traction boundary condition (5) into the weak formulation, we will add
back the mrr � u to the right hand side of (1). So, in this paper, when talking about the traction boundary condition (5), we
will use the following momentum equation
@tuþ u � ruþrp ¼ mr � ðruþru>Þ þ f in X: ð6Þ
Open boundary condition (4) is used to truncate a big physical domain to make the problem tractable [39]. In some situa-
tions, when the outflow profile cannot be determined a priori (e.g. thinking about how to prescribe the outflow profile for
flow in a bifurcated tube), one can use (4) as the outflow boundary condition (Fig. 1). Traction boundary condition (5) can
also be used for the same purposes. Moreover (5) is related to the free boundary problem [13] and the problem of fluid–
structure interaction [12,35]. For the well-posedness of NSE with these two types of boundary conditions, we refer to
[18] and the references therein.

1.1. Pressure Poisson equation formulation and pressure boundary conditions on C1

Many of the difficulties in incompressible fluid computations are related to how to enforce the incompressibility con-
straint (2). One approach is to reformulate the original NSE into an equivalent form which replaces r � u ¼ 0 by a pressure
Poisson equation (PPE). The PPE formulations with various right hand sides of the Poisson equation and various boundary
conditions for the pressure have been widely used [34,17,40]. When C2 ¼ ;, i.e. when velocity is given on the whole bound-
ary, [34] proposed the following Poisson equation with Neumann type boundary conditions for the pressure:
Dp ¼ r � ðf � u � ruÞ in X; ð7Þ
n � rp ¼ n � ðf � u � ru� @tg1Þ � mn � r �r� u on C1: ð8Þ
In this situation ðC2 ¼ ;Þ, one can prove that the pressure gradient is strictly dominated by the viscosity term modulo lower
order terms (see [31] for details). Using this pressure estimate, one can directly prove the well-posedness of the PPE formu-
lation of NSE and establish the unconditional stability of a semi-implicit scheme that decouples of the computation of veloc-
ity and pressure. In this paper, semi-implicit means explicit treatment of the pressure term and implicit treatment of the
viscosity term. By this semi-implicit decoupling, we gain efficiency, but we do not sacrifice stability because of the pressure
estimates obtained from (7) and (8) [27,31–33]. Finally, it is easy to see that consistency can be readily achieved using PPE
formulation.

Given the usefulness of this pressure estimate, however, one unpleasant fact is that this estimate requires the velocity to
be known on the whole boundary. When C2 – ; and u satisfies the boundary conditions (4) or (5) on C2, if we keep using (8)
on C1 [ C2, we can no longer apply the aforementioned pressure estimate to analyze the resulting numerical schemes be-
cause u on C2 becomes unknown. Moreover, the p solved from (7) and (8) will still be a solution if we add an arbitrary con-
stant a to it. On the other hand, we know we cannot add any a to the p in (4) or (5). So, if the momentum Eq. (1) or (6) are
supplemented with boundary conditions (4) or (5), using (7) and (8) to determine p becomes problematic because we do not
know how to fix this constant a.

1.2. Pressure boundary condition on C2, pressure estimates and unconditional stability of semi-implicit schemes

Having mentioned the limitation of the boundary condition (8) on C2, we now propose new boundary conditions of p on
C2 so that we can still have some pressure estimates and can handle the constant a mentioned before when C2 – ;. The
resulting pressure estimates eventually enable us to prove the unconditional stability of a semi-implicit scheme for the
Stokes equation. The pressure boundary conditions we proposed are as follows: If on C2, we are given the open boundary
condition (4), then
Fig. 1. Boundary condition for flow in a bifurcated tube with given inflow profile.
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p ¼ mn � ð@nuÞ � mr � u� n � g2 on C2: ð9Þ
If on C2, we are given the traction boundary condition (5), then
p ¼ mn>ðruþru>Þn� mr � u� n � g2 on C2: ð10Þ
In fact, the mr � u in (10) can be cmr � u for any c 2 ½1;2� in most numerical tests. We will simply take c ¼ 1 in our following
discussion. It is clear that with these Dirichlet type boundary conditions for p, there is no room for the arbitrary constant a.

1.3. Connections with [20] and Uzawa algorithm

Numerical methods for NSE with open and traction boundary conditions have been studied by [20] which has proved er-
ror estimates for the following semi-discrete scheme
3~unþ1�4unþun�1

2Dt � mD~unþ1 þrpn ¼ f nþ1

~unþ1jC1
¼ 0; ðpnn� m@n ~unþ1ÞjC2

¼ 0

(
ð11Þ

3unþ1�3~unþ1

2Dt þr/nþ1 ¼ 0
r � unþ1 ¼ 0
unþ1 � njC2

¼ 0; /nþ1jC2
¼ 0

8><
>: ð12Þ

/nþ1 ¼ pnþ1 � pn þ vr � ~unþ1 ð13Þ
where v 2 0; 2
m m

� �
is constant and m is the space dimension. Traction boundary condition (5) can be handled similarly. To our

surprise, if we restrict (13) on C2 and use the boundary conditions in (11) and (12), we find
pnþ1 ¼ mn � ð@n ~unþ1Þ � vr � ~unþ1 on C2 ð14Þ
which is almost exactly (9) except we take v ¼ m. (But the analysis in [20] does not apply to v ¼ m.) In fact, we will obtain
similar boundary conditions of p (with a different v) if we apply Uzawa algorithm [43] to solve NSE with open or traction
boundary conditions. Note that the pnþ1 in (11)–(13) will satisfy some Poisson equation that is slightly different from (7).

1.4. Unconstrained NSE

After mentioning the above connections, we would like to point out the main difference between our current approach
and those in [20] or in Uzawa algorithm: By (7)–(9), we are actually saying that the pressure at time t is completely determined
from the velocity at time t without any time lag, which can be written as pðtÞ ¼ PðuðtÞÞ (after ignoring the dependence on
ff ; g1; g2g for simplicity). Then the NSE (1)–(4) can be written as
@tuþ u � ruþrPðuÞ ¼ mDuþ f in X ð15Þ
with boundary condition u ¼ g1 on C1 and m@nu� PðuÞn ¼ g2 on C2 (See Proposition 1). By considering NSE (15) as simply an
ODE of u in function space without any constraint, we gain more freedom to design efficient and stable time steppings. In
fact, in some sense we can consider (15) as a perturbed heat equation. Problems like designing spectrally accurate numerical
schemes [25] and designing efficient time steppings for fluid elastic structure interactions can be re-considered from these
new point of views.

1.5. Inf–sup conditions

Another difference between [20] and our paper is that finite element schemes based on [20] ((11)–(13)) require the inf–
sup compatibility condition between Xh and Yh which are the finite element spaces for velocity and pressure:
inf
qh2Yh

sup
vh2Xh

hr � vh; qhi
krvhkkqhk

P c > 0 ð16Þ
where c is a constant independent of h [5,9]. On the other hand, our schemes might be able to avoid this inf–sup condition.
The following discussion also serves to clarify the differences between [20] and our approach in the fully discrete case.

For finite element discretization, if the pressure finite element space Yh is too big with respect to the velocity finite ele-
ment space Xh, there could be some �ph 2 Yh; �ph – 0 such that
Z
X
ðr � vhÞ�ph ¼ 0 for all vh 2 Xh: ð17Þ
These �ph’s are called spurious pressure modes. If using C0 finite elements, because ther � ~unþ1
h in (13) is discontinuous, it can

contain some small �ph’s which can be passed to pnþ1
h by (13). Moreover, any �ph contained in pn

h will also be passed to pnþ1
h by

(13) since it is pnþ1
h � pn

h that matters. Certainly there is no mechanism to kick those �ph’s out of (11)–(13) and there is no
mechanism to prevent them from accumulating and growing. Intuitively, the discontinuous r � ~unþ1

h could be a constant
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source to generate those spurious pressure modes. Even for spectral finite elements, there is still no mechanism to kill those
spurious modes and the system is still vulnerable. Numerical examples [20] and theoretical analysis [24] indicate that finite
element schemes based on (11)–(13) require the velocity/pressure pairs to satisfy (16) which among many things exclude
the existence of spurious pressure modes at all.

Unlike [20] which uses pn to compute pnþ1 hence leaving room for the preservation and accumulation of spurious pressure
modes, our pnþ1 is computed from a Poisson equation using velocity only. One might say that the standard projection method
also determines p from velocity only [11,42]. However, our formulation does not contain the trouble-making 1

Dt factor in the
Poisson equation for p [21]. So far, what we can say is the following: In all the computations including stability and accuracy
check, backward facing step flow, flow past a cylinder and flow in a bifurcated tube, we are able to use Lagrange finite ele-
ments of equal order for both velocity and pressure which are known to not satisfy the inf–sup condition [14]; Following
[21], we also tried to integrate with a very small time step on a relatively coarse grid using P1/P1 finite elements, but still
did not observe any spurious pressure mode. When C2 ¼ ; and when using C1 finite elements for velocity, stability and error
estimates of a first order semi-implicit scheme are proved in [32] where incompatible velocity/pressure pairs can be used.
Numerically, this has also been observed for C0 finite element schemes in [27,33] with no-slip boundary conditions only. The
advantage of getting rid of the inf–sup condition is that anyone can then very easily turn his favorite heat equation solver
into a NSE solver.

We get this advantage on inf–sup condition as a by-product of the unconstrained formulation (15). If just looking at the
inf–sup condition, a more standard approach for using equally ordered finite element pairs is to use the stabilized finite ele-
ment methods (see [7] and the references therein). There are also studies of inf–sup condition in other problems. In compu-
tational elasticity, if stress–displacement formulation is used, Brezzi’s stability condition [9] is required [4]. But using purely
displacement formulation can avoid the Brezzi’s condition completely [8]. Similar things happen to the Poisson equation [3].
What we have learned through these examples is that changing the formulation may give us a chance to avoid some com-
plicated conditions in computation. This is probably the situation we are facing right now.

There are tons of the literatures related to numerical method for NSE, even though many are restricted to no-slip bound-
ary conditions only. In the following, we will only mention those which are most relevant to our current work: Our paper
basically can be viewed as a following up paper of [34,27] which deals with no-slip boundary conditions only. Same obser-
vations related to inf–sup condition have been made in [27,31–33] where a fully discrete scheme has been rigorously studied
in [31,32]. Schemes similar to (11)–(13) that requires inf–sup condition have been studied in [44,19,20,22–24]. Error esti-
mates of (11)–(13) are proved in [20]. Some earlier work on open boundary conditions can be found in [39]. Other related
important literatures include [42,11,28,30,29,37] and the references in [19,31].

The rest of the paper is organized as follows: In Section 2, we introduce the pressure boundary condition for PPE on the
open or traction boundaries. Then we prove the equivalence between PPE formulation and (1)–(4) or {(6), (2), (3), (5)}. In
Section 3, we prove the unconditional stability of the first order semi-implicit scheme for the Stokes equation. Higher order
schemes are presented in Setion 4 and how to further enforce r � u ¼ 0 is discussed in Section 5. C0 finite element discret-
ization is discussed in Section 6 followed by various numerical tests in Section 7.
2. Pressure boundary condition

In this section, we will propose the pressure boundary conditions used in PPE formulation when there are open and trac-
tion boundaries.

2.1. Pressure boundary condition on open boundaries

As we have mentioned in the introduction, in the open boundary condition case, we propose to replace (2), the incom-
pressibility constraint with the following Poisson equation for pressure which combining with the momentum equation will
enforce r � u ¼ 0 automatically:
Dp ¼ r � ðf � u � ruÞ in X ð18Þ
@np ¼ n � ðf � u � ru� @tg1Þ � mn � r �r� u on C1 ð19Þ
p ¼ mn � ð@nuÞ � mr � u� n � g2 on C2: ð20Þ
We have the following equivalency results of the two formulations:

Proposition 1. Assuming enough regularity of the solution and the data ff ; g1; g2g, if the initial velocity is divergence free, then
{(1), (3), (4), (18)–(20)} is equivalent to (1)–(4).

Proof. Let us first prove {(1), (3), (4), (18)–(20)} implies (1)–(4): Dotting both sides of (1) by n, restricting the result on C1

and then subtracting (19) from it, we obtain mn � Du ¼ �mn � r �r� u on C1. Hence
@nðr � uÞ ¼ 0 on C1
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because Du ¼ rr � u�r�r� u. Dotting both sides of (4) by n, we get

p ¼ mn � ð@nuÞ � n � g2 on C2:
Subtracting (20) from the above result, we get
r � u ¼ 0 on C2
Finally, taking divergence of (1) and subtracting (18) from it, we get
@tðr � uÞ ¼ mDðr � uÞ in X: ð21Þ
Together with the zero Neumann condition on C1 and zero Dirichlet condition on C2 (21) implies r � u ¼ 0 in X.
The proof of other direction is similar, which we omit. h

Remark 1. We mention in passing that we can change the extra �mr � u in (20) to anything like �20mr � u or þmr � u and
will still obtain Proposition 1. The reason why we choose this specific one is because of the stability results we can then
obtained (Proposition 3).

Remark 2. We did not precisely state what the regularity requirements for the solution and data in Proposition 1 are. Obvi-
ously the regularity we need can be determined from the requirement that all the manipulations in the proof are legal. But in
fact much less regularity is required for which we refer the interested readers to the more rigorous treatment in [18]. Same
remarks apply to Proposition 2.
2.2. Pressure boundary condition on traction boundaries

We have the equivalency results similar to Proposition 1 with a very similar proof which is then omitted.

Proposition 2. Assuming enough regularity of the solution and the data ff ; g1; g2g, if the initial velocity is divergence free, then
{(6), (3), (5), (18), (19), (10)} is equivalent to {(6), (3), (5), (2)}.
3. Unconditional stability of a semi-implicit scheme for Stokes equation with open boundaries

In this section, we prove the unconditional stability of a first order semi-implicit scheme for Stokes equation with open
boundary conditions. So far, we only have the proof when we keep the spatial variables continuous. The analysis is an exten-
sion of that in [27] for the no-slip boundary condition case.

Let us consider the Stokes equation in a periodic strip X ¼ ½�1;1� � ð0;2pÞwhere we have periodic boundary condition in
y direction, no-slip condition on fx ¼ �1g and open boundary condition with g2 ¼ 0 on fx ¼ 1g. Since it is a linear equation,
we can take m ¼ 1, and the results apply to any m. The PPE formulation {(1), (3), (4), (18)–(20)} is as follows ðu ¼ ðu;vÞÞ:
@tuþrp ¼ Du in X ð22Þ
u ¼ 0; v ¼ 0 on fx ¼ �1g ð23Þ
@xu� p ¼ 0; @xv ¼ 0 on fx ¼ 1g ð24Þ
Dp ¼ 0 in X ð25Þ
@xp ¼ @2

yu� @x@yv ; on fx ¼ �1g ð26Þ
p ¼ �@yv on fx ¼ 1g: ð27Þ
Since u ¼ 0 on fx ¼ �1g (26) reduces to
@xðpþ @yvÞ ¼ 0 on fx ¼ �1g: ð28Þ
Together with (27), we see that pþ @yv satisfies
Dðpþ @yvÞ ¼ D@yv; @xðpþ @yvÞjx¼�1 ¼ 0; pþ @yvjx¼1 ¼ 0: ð29Þ
Since we have Neumann boundary condition on the left boundary and Dirichlet boundary condition on the right, we define
the solution operator of the above equation by D�1

ND. Then we have
p ¼ D�1
NDD� I

� �
@yv : ð30Þ
Now, define the pressure operator
B ¼ @y D�1
NDD� I

� �
@y: ð31Þ
Then Bv ¼ @yp and the v-component of the momentum Eq. (22) can be written as
@tv � Dv þ Bv ¼ 0: ð32Þ
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Define for any a > 0,
Hp ¼ fp 2 H1þaðXÞ; @xpjx¼�1 ¼ 0; pjx¼1 ¼ 0g; ð33Þ
Hv ¼ fv 2 H2þaðXÞ; vjx¼�1 ¼ 0; @xv jx¼1 ¼ 0g: ð34Þ
Notice that for any /;w belong to Hp at the same time, or any /;w belong to Hv at the same time, we always have
hDw;/i ¼ �hrw;r/i: ð35Þ
Lemma 1. For any u;v 2 Hv , we have
hDu;Bvi ¼ hDv;Bui; ð36Þ
jhDv ;Bvij 6 kDvk2

: ð37Þ
Proof. The proof is basically the same as the one in [27]. Let w;/ 2 Hp \ H2þa, satisfying
Dw ¼ Du; D/ ¼ Dv : ð38Þ
When / 2 Hp \ H2þa, we have @y/ 2 Hp and hence D�1
NDD@y/ ¼ @y/. So
Bv ¼ @yD
�1
NDD@yv � @2

yv ¼ @yD
�1
NDD@y/� @2

yv ¼ @
2
y/� @

2
yv:
Because we have periodic boundary condition in y direction, we can integrate by parts on y freely. So using Du ¼ Dw,
hDu;Bvi ¼ hDw; @2
y/i � hDu; @2

yvi ¼ �hD@yw; @y/i þ hD@yu; @yvi ¼ hr@yw;r@y/i � hr@yu;r@yvi ð39Þ
where we have used (35) in the last step. We can interchange w and / and then u and v in (39). This proves (36).
To prove (37), we start from (39) and obtain
hDv ;Bvi 6 hr@y/;r@y/i ¼ h@x@y/; @x@y/i þ h@2
y/; @

2
y/i ð40Þ

� hDv ;Bvi 6 hr@yv;r@yvi ¼ h@x@yv ; @x@yvi þ h@2
yv ; @

2
yvi: ð41Þ
So, using h@2
x/; @

2
y/i ¼ h@x@y/; @x@y/iP 0, we have
kDvk2 ¼ kD/k2 ¼ h@2
x/; @

2
x/i þ 2h@x@y/; @x@y/i þ h@2

y/; @
2
y/iP hDv ;Bvi:
Similarly, we can prove kDvk2 P �hDv ;Bvi. h

Note that the v component of the velocity satisfies the boundary condition in Hv . With Lemma 1, we can prove the fol-
lowing stability results for the semi-implicit scheme which treats the pressure term explicitly. The proof is essentially the
same as the proof in [27] for the no-slip boundary condition case except that now our results in Lemma 1 are slightly weaker
than those from [27] (see Remark 3). But it turns out to be enough.

Proposition 3. The following semi-implicit scheme (recall that Bvn ¼ @ypn)
vnþ1 � vn

Dt
� Dvnþ1 þ Bvn ¼ 0 ð42Þ
satisfies
krvnk2
6 krv0k2 þ Dt

2
kDv0k2 þ Dt

2
hDv0;Bv0i; 8 n: ð43Þ
Proof. The idea is to dot (42) by �Dðvnþ1 þ vnÞ. Thanks to the boundary condition of v in (23) and (24), we can integrate by
parts and obtain
krvnþ1k2 � krvnk2

Dt
þ 1

2
ðkDvnþ1k2 � kDvnk2Þ þ 1

2
kDðvnþ1 þ vnÞk2 ¼ hDðvnþ1 þ vnÞ;Bvni: ð44Þ
Now using (37) and (36), we get
hDðvnþ1 þ vnÞ;Bvni ¼ 1
2
hDðvnþ1 þ vnÞ;Bðvnþ1 þ vnÞi � 1

2
hDðvnþ1 þ vnÞ;Bðvnþ1 � vnÞi

6
1
2
kDðvnþ1 þ vnÞk2 � 1

2
hDvnþ1;Bvnþ1i � hDvn;Bvni
� �

:

So, in the end, we have
krvnþ1k2 � krvnk2

Dt
þ kDvnþ1k2 � kDvnk2

2
6 �hDvnþ1;Bvnþ1i � hDvn;Bvni

2
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which means
Table 1
Coeffici

ak
j

k ¼ 1
k ¼ 2
k ¼ 3
k ¼ 4

bm
j

m ¼ 1
m ¼ 2
m ¼ 3
m ¼ 4
anþ1
6 an; with an ¼ krvnk2 þ Dt

2
kDvnk2 þ Dt

2
hDvn;BvniP krvnk2

: �
Remark 3. As we have mentioned many times, the above results generalize those in [27] where they use no-slip boundary
conditions on both x ¼ �1 and x ¼ 1 boundaries and enjoy an extra property hDv;BviP 0. We can also obtain the same
result as in Proposition 3 when there are open boundary conditions on both x ¼ �1 and x ¼ 1 boundaries. And then we will
have an extra property hDv;Bvi 6 0, after some simple modifications like B ¼ @y D�1

DDD� I
� �

@y;Hp ¼
fp 2 H1ðXÞ; pjx¼�1 ¼ pjx¼1 ¼ 0g and Hv ¼ fv 2 H2ðXÞ; @xv jx¼�1 ¼ @xv jx¼1 ¼ 0g.

Remark 4. There are only small differences between the traction boundary condition (5) and the open boundary condition
(4). Unfortunately, the results of Lemma 1 and Proposition 3 are very sensitive to these subtle differences. For example, if
using (5), the vx ¼ 0 in (24) will be changed to vx þ uy ¼ 0 on fx ¼ 1g. Then the integration by part of vnþ1�vn

Dt ;Dvnþ1
D E

will
produce boundary terms. In fact, it is unclear if we should still dot Dvnþ1 in this case. For these difficulties, at this moment,
we do not have a stability proof for schemes with traction boundary conditions. But numerically the unconditional stability
has been observed with first order semi-implicit time stepping.
4. Higher order semi-implicit schemes

Because the viscosity term can dominate the pressure term, we might have schemes with good stability property if we
treat the viscosity term implicitly while treating the pressure term explicitly. Treating the pressure term explicitly allows
the decoupling of the computations of velocity and pressure. For simplicity, we will also treat the convection term explicitly.

We use kth order backward differentiation formula for the viscosity term and kth order extrapolation for pressure and
nonlinear terms. We will need the extrapolation formula of order k
Ekpnþ1 ¼
Xk

j¼1

bk
j pnþ1�j ð45Þ
where the coefficients bk
j ’s are defined in Table 1.

Let us introduce the shorthand
hn ¼ un � run; Fnþ1 ¼ f nþ1 � Ekhnþ1
: ð46Þ
Then a kth order temporally accurate scheme for NSE with open boundary condition is as follows: given un, we first solve for
pn from the pressure Poisson equation
Dpn ¼ r � ðf n � hnÞ in X ð47Þ
n � rpn ¼ n � ðf n � hn � @tg1ðtnÞÞ � mn � r �r� un on C1 ð48Þ
pn ¼ mn � ðn � runÞ � mr � un � n � gn

2 on C2: ð49Þ
Then we calculate unþ1 by the momentum equation
1
Dt

ak
0unþ1 þ

Xk

j¼1

ak
j unþ1�j

 !
þrEkpnþ1 ¼ mDunþ1 þ Fnþ1 in X ð50Þ

unþ1 ¼ gnþ1
1 on C1 ð51Þ

m n � runþ1 ¼ Ekpnþ1 nþ gnþ1
2 on C2; ð52Þ
ents for backward differentiation and extrapolation.

j ¼ 0 j ¼ 1 j ¼ 2 j ¼ 3 j ¼ 4

1 �1 0 0 0
3/2 �2 1/2 0 0
11/6 �3 3/2 �1/3 0
25/12 �4 3 �4/3 1/4

j ¼ 1 j ¼ 2 j ¼ 3 j ¼ 4

1 0 0 0
2 �1 0 0
3 �3 1 0
4 �6 4 �1
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where Fnþ1 is defined in (46) and the ak
j ’s are given in Table 1. Note that both pressure and nonlinear terms are treated explic-

itly. The associated schemes for traction boundary condition are obvious, which we omit.

5. Divergence suppression and Leray projection

We have observed in our numerical examples that when the solution is smooth, the above schemes based on PPE formu-
lation do a good job to enforce divergence to be close to zero. However, when the solution is less regular, divergence errors
can be large at places (reentrant corners for example) where the solution is less regular. In all the benchmark computations
we will present later, we have found that it is very useful to introduce further divergence suppressions, using the techniques
in [37] or [32,33].

To do that, let us recall the Leray projection operator P which projects un onto the space of divergence free vector field.
The result is denoted by Pun. So, Pun ¼ un �rqn with qn satisfying
Dqn ¼ r � un in X; n � rqn ¼ 0 on @X: ð53Þ
Note that n � Pun ¼ n � un on @X. With this additional Poisson equation in each step, for the divergence suppression, we need
and only need to change (50) to
1
Dt

ak
0unþ1 þ

Xk

j¼1

ak
j ðunþ1�j �rqnþ1�jÞ

 !
þrEkpnþ1 ¼ mDunþ1 þ Fnþ1: ð54Þ
So, the only modification is to replace the unþ1�j in the time derivative approximation by unþ1�j �rqnþ1�j.
In practice, since the value of un is not given on the open or traction boundaries, the numerical solution un may not satisfy

the compatibility condition 0 ¼
R

Xr � un ¼
R
@X n � u which is required by (53) in order to have a solution qn. In the compu-

tations, either we ignore this discrepancy, or we play some tricks, like changing the right hand side of (53) to
r � un � 1

jXj
R

Xr � un, or we use another way to define qn. In the last approach, we try to preserve the tangential velocity
on the open or traction boundaries in the Leray projection step, namely, we use
Dqn ¼ r � un in X; n � rqn ¼ 0 on C1; qn ¼ 0 on C2: ð55Þ
Note that the boundary condition qn ¼ 0 on C2 is perfectly physical because q � 0 for the exact solution. With the qn defined
by (55), Pun ¼ un �rqn would still be divergence free, but now s � Pun ¼ s � un on C2 where s is any tangential vector on C2.

It turns out that using (55) gives better results than using (53) in our time accuracy check. So, the semi-implicit scheme
with further divergence suppression used in our computations will be {(47)–(49), (55), (54), (51), (52)}. For efficiency, we can
combine (47)–(49) and (55) into one step. Namely, we can define
�p ¼ Ekpnþ1 � 1
Dt

Xk

j¼1

ak
j qnþ1�j ð56Þ
and solve only one pressure-like quantity (�p) per time step. Again, this divergence suppression can be applied to traction
boundary condition case too.

6. C0 finite element formulation

In this section, we will derive the finite element approximation. To simplify the presentation, we will focus on the open
boundary condition case (47)–(52) and discuss the divergence suppression and the traction boundary condition case very
briefly in the end. We start from a scheme where we use C1 finite elements for velocity and C0 finite elements for pressure,
and then show how we can use C0 finite elements for both velocity and pressure.

6.1. Finite element schemes with C1 finite elements for velocity

Define
X0 ¼ fv 2 H2ðX; RmÞ; v jC1
¼ 0g; Y0 ¼ f/ 2 H1ðXÞ; /jC2

¼ 0g ð57Þ
and let Xh and Yh be the finite element spaces for velocity and pressure. For the moment, we assume Xh � H2ðX; RmÞ and
Yh � H1ðXÞ. (Later, we will relax it to the case where both Xh and Yh are C0 finite element spaces.)

For the pressure equation, we first dot (47) with /h 2 Y0;h :¼ Y0 \ Yh and then replace the pn and un in (47) by pn
h 2 Yh and

un
h 2 Xh. We get
hrpn
h;r/hi ¼ hf n � hn

h;r/hi � hn � @tg1ðtnÞ;/hiC1
� mhn � r �r� un

h;/hiC1
ð58Þ
for any /h 2 Y0;h. We require the boundary condition pn
h ¼ mn � @nun

h

� �
� mr � un

h � n � gn
2 on C2 to be valid in H1=2ðC2Þ.

For the momentum equation, we first dot (50) with vh 2 X0;h :¼ X0 \ Xh and then replace the pn and un in (50) by pn
h 2 Yh

and un
h 2 Xh. After integration by parts and using boundary condition (52), we get
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1
Dt

ak
0hunþ1

h ;vhi þ
Xk

j¼1

ak
j hu

nþ1�j
h ;vhi

 !
� hEkpnþ1

h ;r � vhi þ mhrunþ1
h ;rvhi ¼ hFnþ1

h ;vhi þ hgnþ1
2 ;vhiC2

ð59Þ
for any vh 2 X0;h. In the above equation, we have used the shorthand Fnþ1
h ¼ f nþ1 � Ekhnþ1

h . For the boundary value, we re-
quire unþ1

h ¼ gnþ1
1 on C1.

6.2. Finite element schemes with C0 finite elements for velocity

So far, every inner product and every boundary condition make sense, but we have to use C1 finite elements for the veloc-
ity un

h because the last term in (58) contains second order derivatives. C1 finite element schemes are usually considered to be
complicated to implement. In the following, we will try to find a way to use C0 finite elements only.

Following [27], when un
h 2 H2ðX;RmÞ, we can apply the following identity to reduce the last term in (58) to a term involv-

ing first order derivatives only:
hn � r �r� un
h;/hiC1

¼ hn � r �r� un
h;/hi@X ¼ hr �r� un

h;r/hi ¼ hn�r� un
h;r/hi@X

¼ �hr� un
h;n�r/hi@X ¼ �hr� un

h;n�r/hiC1
8/h 2 Y0;h ð60Þ
where in the last step, we have used the fact that n�r/h ¼ n� ðn � r/hÞnþ
Pm�1

i¼1 ðsi � r/hÞsi

� �
¼ 0 on C2 because

/hjC2
¼ 0. With (60) replacing the last term in (58), we can now try to use C0 finite elements for velocity.

So, Define
Z0 ¼ fv 2 H1ðX; RmÞ; v jC1
¼ 0g; Y0 ¼ f/ 2 H1ðXÞ; /jC2

¼ 0g: ð61Þ
Let Zh and Yh be the C0 finite element spaces for velocity and pressure and define Z0;h ¼ Zh \ Z0;Y0;h ¼ Yh \ Y0. Then, given
un

h 2 Zh, determine the pressure approximation pn
h 2 Yh by requiring
hrpn
h;r/hi ¼ hf n � hn

h;r/hi � hn � @tg1ðtnÞ;/hiC1
þ mhr � un

h;n�r/hiC1
ð62Þ
for any /h 2 Y0;h. When using C0 Lagrange finite elements for both un
h and /h;r� un

h and n�r/h are both piecewise poly-
nomials on C1, which enables us to implement hr � un

h;n�r/hiC1
in (62) without any problem. But in analysis, if we want

to bound hr � un
h;n�r/hiC1

, we need, say, /h 2 H1ðXÞ (hencer/h 2 Hðcurl;XÞ) and un
h 2 H2ðXÞwhich is not available when

C0 finite elements are used for un
h. In this paper, we will ignore this flaw in analysis and keep using C0 finite elements because

the numerical results turn out to be all right.
In order to enforce the boundary condition (49), we need to project n � ð@nun

hÞ � r � un
h onto YhjC2

with
YhjC2

¼ f/jC2
; / 2 Yhg. If we call the result rn

h , then the boundary value of pn
h on C2 is
pn
h ¼ mrn

h � n � gn
2 on C2: ð63Þ
After we obtain pn
h, we can solve for unþ1

h 2 Zh by requiring
1
Dt

ak
0hunþ1

h ;vhi þ
Xk

j¼1

ak
j hu

nþ1�j
h ;vhi

 !
� hEkpnþ1

h ;r � vhi þ mhrunþ1
h ;rvhi ¼ hFnþ1

h ;vhi þ hgnþ1
2 ;vhiC2

ð64Þ
for any vh 2 Z0;h. The grid values of unþ1
h on C1 is determined by
unþ1
h ¼ gnþ1

1 on C1: ð65Þ
6.3. Divergence suppression

So far, we have not included the divergence suppression which can be turned on in a fairly straightforward way. So, given
un

h, we first calculate pn
h by (62) and (63). Then we determine qn

h 2 Y0;h by requiring
hrqn
h;r/hi ¼ �hr � un

h;/hi ð66Þ
for any /h 2 Y0;h. Finally we determine unþ1
h 2 Zh by solving
1
Dt

ak
0hunþ1

h ;vhi þ
Xk

j¼1

ak
j hu

nþ1�j
h �rqnþ1�j

h ;vhi
 !

� hEkpnþ1
h ;r � vhi þ mhrunþ1

h ;rvhi ¼ hFnþ1
h ;vhi þ hgnþ1

2 ;vhiC2
ð67Þ
for any vh 2 Z0;h and also using (65). After writing hrqnþ1�j
h ;vhi as �hqnþ1�j

h ;r � vhi using vh ¼ 0 on C1 and qnþ1�j
h ¼ 0 on C2,

we can define �ph like in (56) so that only one pressure-like quantity is need to be solved in each step.

6.4. Traction boundary condition case

All the derivations we have done for the open boundary condition case can be readily applied to the traction boundary
condition case. We can obtain the following equations for unþ1

h :
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1
Dt

ak
0hunþ1

h ;vhi þ
Xk

j¼1

ak
j hu

nþ1�j
h �rqnþ1�j

h ;vhi
 !

� hEkpnþ1
h ;r � vhi þ mhrunþ1

h þrunþ1;>
h ;rvhi

¼ hFnþ1
h ;vhi þ hgnþ1

2 ;vhiC2
ð68Þ
for any vh 2 Z0;h. Because hruþru>;rv �rv>i ¼ 0 for any u;v 2 H1ðX;RmÞ, we can rewrite the mhrunþ1
h þrunþ1;>

h ;rvhi
in (68) into the symmetric form
m
2
hrunþ1

h þrunþ1;>
h ;rvh þrv>h i:
The finite element equations for pn
h and qn

h remain the same, except the rn
h in (63) is now the projection of

n>ðrun
h þrun;>

h Þn�r � un
h onto YhjC2

.

7. Numerical tests

In this section, we will test the stability, accuracy and benchmark performance of the semi-implicit schemes for open and
traction boundary conditions.

To simplify the presentation, we will use the divergence suppression mentioned in Section 5 in all the computations, even
though this is not necessary when the exact solution is smooth. For open boundary condition (4), the scheme that will be
tested is {(47)–(49), (55), (54), (51), (52)} and its finite element version {(62), (63), (66), (67), (65)}. The scheme used for trac-
tion boundary condition (5) is {(62), (63), (66), (68), (65)}. We will test the unconditional stability of the first order scheme
and verify the 2nd order temporal accuracy of the 2nd order scheme. The latter is also used in most of the benchmark com-
putations. To save space, for the traction boundary condition, we only present results of the benchmark computations.

In our numerical study, when the viscosity is large, say, m P 0:1, we can take very large time step in the first order semi-
implicit scheme for the fully nonlinear NSE and seem to have unconditional stability which is consistent with Proposition 3
(see Table 2 and Fig. 8). However, starting form the 2nd order scheme, some preliminary numerical tests indicate that we
might have diffusive time step restrictions when the Dirichlet and Neuman boundaries intersect, i.e. when C1

T
C2 – ;, even

though we do have higher order accuracy in time. In large Reynolds number computations, the diffusive time step restriction
is not a big problem. For small Reynolds number computations with open or traction boundaries, we suggest to use the first
order scheme if one does not want to use a very small time step. An alternative choice is to use the scheme discussed in [25]
which has inherited the stability of the first order scheme and at the same time is temporally spectrally accurate and is also
very efficient. When there are no open or traction boundaries, stable schemes up to 3rd order have been obtained in [32,33].

We use equal order velocity/pressure pairs in all the finite element computations which are known to not satisfy the inf–
sup condition [14]. The finite element package we have implemented is in some sense an upgraded version of iFEM due to
Long Chen (work in preparation, see http://math.uci.edu/~chenlong/). iFEM is an adaptive piecewise linear finite element
package based on MATLAB. It uses a beautiful data structure to represent the mesh and also provides efficient MATLAB sub-
routines to manipulate the mesh (e.g. see [10,1]). In particular, local refinement and coarsening can be done fairly easily. For
our purposes, we have extended it to isoparametric Lagrange elements up to P4 [41,16]. The finite element mesh is generated
using DistMesh of Persson and Strang [36]. The contour plots on unstructured mesh are generated by the MATLAB routine
tricontour.m due to Darren Engwirda [15].

For details about collocative spectral methods, we refer to [45] or [38].
The stability and accuracy tests are performed using the following exact solution
u ¼ cosðtÞ cos2ðpx=2Þ sinðpyÞ; ð69Þ
v ¼ � cosðtÞ sinðpxÞ cos2ðpy=2Þ; ð70Þ
p ¼ cosðtÞ cosðpx=2Þ sinðpy=2Þ: ð71Þ
The computational domain is either ½�0:5;0:5� � ½�0:5;0:5� for collocative spectral method [45,38] or
½�0:5;0:5� � ½�0:5;0:5� n fx2 þ y2

6 0:22g for finite element method. In both cases, the boundary fx ¼ 0:5g is taken to be
check for first order scheme ðk ¼ 1Þ with open boundary conditions. Collocative spectral or P2/P2 finite element (FE) discretization. �log10E vs. Dt.
000. m ¼ 1. We get similar results for traction boundary conditions.

E n Dt 1/4 1/2 1 2 4 8

kp� phkL1 0.115 0.178 0.0415 �0.366 �0.153 �0.224
l ku� uhkL1 1.7 1.51 1.25 0.968 0.794 0.95

kv � vhkL1 2.11 1.69 1.23 0.682 0.517 0.768

kp� phkL1 0.232 0.142 0.125 �0.0618 0.0889 0.0256
E ku� uhkL1 1.7 1.47 1.24 0.947 0.916 0.965

kv � vhkL1 1.79 1.66 1.42 0.923 0.903 0.956

http://math.uci.edu/chenlong/
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C2 while the rest of the boundary is C1. The exact value of m@nu� p n or mðruþru>Þn� p n is calculated and then enforced
at the boundary fx ¼ 0:5g. Fig. 2 shows the finite element mesh used in stability check. It is also the coarsest mesh used in
temporal accuracy check.

7.1. Stability

For the stability check of the first order scheme, we integrate to T ¼ 10;000 with Dt as large as 8. For spectral method, the
grid is fixed to be 36� 36. For finite element method, the mesh is shown in Fig. 2. If any element has an edge on the circle, it
is an isoparametric element. There are 324 P2 finite elements (dof = 740) for each variable.

The stability results are listed in Table 2. In the table, the main quantity tabulated is �log10E, where E is the quantity listed
in the 2nd column. We seem to have unconditional stability of the first order scheme even for the full NSE which is consis-
tent with the analysis for the Stokes equation in Proposition 3. Please see also Fig. 8 for a more interesting stability test where
we take Dt ¼ 1.

In Tables 2–4, we have used u;v; p to denote the exact solution (69)–(71) and use uh;vh; ph to denote the numerical
solution.
Fig. 2. Mesh used in stability and temporal accuracy check.

Table 4
Temporal accuracy of the 2nd order scheme with open boundary conditions. Finite element discretization. �log10E (and local order a) vs. Dt. The coarsest mesh
is shown in Fig. 2 which is used when Dt ¼ 0:01. When Dt is reduced by half, one triangle breaks into 4 triangles (h! h=2). P2/P2 isoparametric finite elements
are used so that spatial errors are less than or equal to the temporal errors. This table also shows the P2/P2 discretization has 2nd order accuracy in space for
velocity and pressure gradients in L2 norm. T ¼ 2. m ¼ 0:001. We get similar results for traction boundary conditions.

E n Dt 0.01 0.005 0.0025 0.00125

kp� phkL1 3.98 (2.83) 4.83 (1.95) 5.42 (2.04) 6.03 (2.02)
krðp� phÞkL2 2.9 (2.17) 3.55 (2.33) 4.25 (2.23) 4.92 (2.08)
ku� uhkL1 3.26 (2.18) 3.92 (2.16) 4.57 (2.02) 5.18 (2.02)
krðu� uhÞkL2 2.26 (2.23) 2.93 (2.38) 3.64 (2.26) 4.32 (2.1)
kv � vhkL1 3.32 (3.05) 4.24 (2.14) 4.88 (2.07) 5.51 (2.04)
krðv � vhÞkL2 2.28 (2.18) 2.93 (2.4) 3.65 (2.3) 4.35 (2.13)

Table 3
Temporal accuracy of the first order scheme with open boundary conditions. Collocative spectral discretization with 90� 90 mesh. Spatial errors can be ignored
comparing with temporal errors. �log10E (and local order a) vs. Dt. T ¼ 4. m ¼ 1.

E n Dt 3�3 3�4 3�5 3�6

kp� phkL1 0.52 (0.905) 0.952 (1.02) 1.44 (1.01) 1.92 (1.01)
krðp� phÞkL2 0.734 (0.944) 1.18 (1.01) 1.67 (1.01) 2.15 (1)
ku� uhkL1 1.97 (0.838) 2.37 (0.943) 2.82 (0.981) 3.29 (0.994)
krðu� uhÞkL2 1.73 (0.855) 2.13 (0.947) 2.59 (0.982) 3.06 (0.994)
kv � vhkL1 2.27 (0.983) 2.74 (0.996) 3.21 (0.999) 3.69 (1)
krðv � vhÞkL2 1.89 (0.985) 2.36 (0.996) 2.83 (0.999) 3.31 (1)
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7.2. Temporal accuracy

In Table 3, we take time steps Dtk ¼ 1=3k for k ¼ 3 to 7 and integrate to T ¼ 4 to do a temporal accuracy check for the first
order scheme. We use collocative spectral discretization and use a fixed 90� 90 grid. So, the spatial errors can be ignored
comparing with the temporal errors. The main quantity tabulated is �log10E, where E is the quantity listed in the first col-
umn. In parentheses we also list the local convergence rate a for E, determined from the formula
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Fig. 3. Meshes used in backward facing step flow computation when m ¼ 1=600, in flow pass a cylinder calculation when m ¼ 1=1000 and in flow in a
bifurcated tube calculation when m ¼ 1=10;1=600.
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boundary condition. Right: zero traction boundary condition.
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a ¼ logðEk=Ekþ1Þ
logðDtk=Dtkþ1Þ

: ð72Þ
Table 3 shows that we do have first order accuracy in time for the first order scheme for all flow variables in both L1 and H1

norms.
We also tested the accuracy of our finite element schemes described in Sections 6.3 and 6.4 with the exact solution

(69)–(71). The temporally 2nd order semi-implicit scheme being tested is also the scheme used in most benchmark compu-
tations. We use P2/P2 finite elements which have 2nd order spatial accuracy for the H1 norm of all flow variables. We vary Dt
but also refine the mesh so that Dt=h remains constant during the process. This guarantees that the spatial errors are smaller
than or equal to the temporal errors. The numerical results in Table 4 show that we do have 2nd order accuracy in time for
the 2nd order scheme. As a by-product, Table 4 also indicates that the spatial accuracy of velocity and pressure gradients in
L2 norm is at least 2nd order with P2/P2 discretization.
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0 0.5 1 1.5 2
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0.4

0
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1 1.5 2
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0 0.5 1 1.5 2
0

0.2

0.4 Fig. 6. Flow past a cylinder with open boundary condition.m¼ 1 = 1000. 763 isoparametric P4 elements (dof = 6322) for each variable. 2nd order scheme.

The plots show the velocity at t ¼ ½ 2 ; 4 ; 5 ; 6 ; 7 ; 8� .

Dt ¼ 0 : 0004. If using zero traction boundary condition, we get very similar plots.



7.3. Benchmark tests with finite elements

Now we test our schemes on the benchmark problems of flow over a backward facing step (with m ¼ 1=100 and
m ¼ 1=600), flow past a cylinder (with m ¼ 1=1000), and then flow in a bifurcated tube (with m ¼ 1=10 and m ¼ 1=600). We
will present both results of using (4) and (5) (with g2 ¼ 0) on the outflow boundary C2.

For the backward facing step flow, we compute in the domain
X ¼ ½0; L� � ½�0:5;0:5� n ½0;0:5� � ½�0:5;0�
with no-slip boundary conditions everywhere except at the inflow boundary x ¼ 0 and the outflow boundary x ¼ L. We take
L ¼ 8 when m ¼ 1=100, and take L ¼ 20 when m ¼ 1=600. But we will only show results near the steps. We start from rest and
gradually increase the velocity ðu;vÞ to ð12yð1� 2yÞ;0Þ at the inflow boundary while retaining m@nu� p n ¼ 0 or
mðruþru>Þn� p n ¼ 0 at the outflow boundary. The time-dependent function we used for gradually increasing velocity
is ð1� cosðptÞÞ=2 on [0,1]. So, when t P 1, the mean inflow velocity is 1 which leads to Re ¼ 1=m when we use twice the step
size as the reference length. The computational mesh for m ¼ 1=600 is shown in Fig. 3. Once the velocity field is obtained, we
calculate the stream function and then show the contour plot of it. Even with a rather coarse mesh, we obtain results that
agree rather well with [2,29] (see Figs. 4 and 5).

For the flow past a cylinder, we follow the setup in [26]. So, the domain is
X ¼ ½0;2:2� � ½0;0:41� n fðx� 0:2Þ2 þ ðy� 0:2Þ2 6 0:052g:
The center of the cylinder is slightly off the center of the channel vertically which eventually leads to asymmetry in the flow.
m is chosen to be 1/1000. The time-dependent inflow profile
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uðt;0; yÞ ¼ 0:41�2 sinðpt=8Þð6yð0:41� yÞ;0Þ ð73Þ
is prescribed. The outflow boundary condition is either m@nu� p n ¼ 0 or mðruþru>Þn� p n ¼ 0 at outflow boundary
fx ¼ 2:2g. Based on the maximum velocity Umax ¼ 1 and the diameter of the cylinder L ¼ 0:1, the Reynolds number of the
flow is 100. The computational mesh is shown in Fig. 3 and the streamline plot at t ¼ ½2;4;5;6;7;8� is shown in Fig. 6. How-
ever, if one compares Fig. 6 with the results we obtained using Dirichlet type outflow boundary condition where a parabolic
velocity profile is prescribed at fx ¼ 2:2g [33,26], one realizes that at t ¼ 8 there is a significant difference: The last eddy is
cut through by the outflow boundary fx ¼ 2:2g if we use the open boundary or zero traction boundary conditions, but the
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ry condition. Bottom: zero traction boundary condition.
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ero traction boundary condition.



J. Liu / Journal of Computational Physics 228 (2009) 7250–7267 7265
last eddy will remain on the left hand side of fx ¼ 2:2g completely if we prescribe a parabolic velocity profile at fx ¼ 2:2g.
This indicates that we might not get a right picture near the outflow boundary if we prescribe a parabolic outflow profile
brutally. We think the Dirichlet type parabolic outflow profile is less physical because it is hard to believe that both eddies
near the top and bottom walls will vanish at the same position at fx ¼ 2:2g, given their previous alternating pattern. Nev-
ertheless, this seems to have little influence on the upstream flow that is around the cylinder. For a quantitative comparison,
we calculate the x and y components of the following quantity, which are denoted as cdðtÞ and clðtÞ, the drag and lift coef-
ficients, respectively:
Fig. 10.
fluxes o
Bottom
2
LU2

max

Z
S
m@nu� p n ð74Þ
where S is the surface of the cylinder. Note that one can show with r � u ¼ 0 and u ¼ 0 on S, ðru>Þn ¼ ð@ iujÞnj ¼ 0 on S and
hence the pseudo-traction used in (74) is the traction [6]. We faithfully calculate the above quantity by surface integration,
instead of transforming it into volume integration. We have also calculated when the maxima of cd and cl occur. These values
are shown in Fig. 7 together with the pressure difference between the front and the back of the cylinder
DpðtÞ ¼ pðt; 0:15;0:2Þ � pðt;0:25;0:2Þ: ð75Þ
Results shown in Fig. 7 agree rather well with results in [26,33]. We mention in passing that if we do not turn on the diver-
gence suppression (66), the flow remains nearly symmetric and the vortex street will not appear.

For the flow in a bifurcated tube with m ¼ 1=10 and 1/600, the computational domain is
X ¼ ½0;8� � ½�0:5; 0:5� n f½0; 0:5� � ½�0:5;0� [ ½1:5;8� � ½�0:1;0:2�g:
The computational mesh is shown in Fig. 3. The same inflow boundary condition as in the backward facing step flow is used
at the fx ¼ 0g boundary. The outflow boundary fx ¼ 8g contains two parts: fx ¼ 8;0:2 6 y 6 0:5g (top) and
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fx ¼ 8;�0:5 6 y 6 �0:1g (bottom). Since the tube bifurcates, we have no way to determine a priori what is the outflow pro-
file for each branch and hence it is impossible to use schemes that require velocity to be given on the whole boundary. Nev-
ertheless, we can use condition m@nu� p n ¼ 0 or mðruþru>Þn� p n ¼ 0 on both the top and bottom parts of the outflow
boundaries. Recall that this is one of our main motivations to study the open and traction boundary conditions. The stability
of the first order semi-implicit scheme can be clearly seen from the m ¼ 0:1 results in Fig. 8 where we take Dt ¼ 1 and impul-
sively impose the inflow profile ðu;vÞ ¼ ð12yð1� 2yÞ;0Þ at the inflow boundary. In Fig. 8, the fluxes are calculated based on
u� :¼ u�rq in each step so that the influx and outflux are balanced from very beginning even though it is a impulsively
started problem and we do not know the outflow profile. The q is defined by (55).

Fig. 9 shows the streamline of the steady state when m ¼ 1=600. In particular, we see three eddies even though the eddy
near corner fx ¼ 1:5; y ¼ 0:2g is very small. In Fig. 10, we also plot the outfluxes at fx ¼ 8;0:2 6 y 6 0:5g (top) and
fx ¼ 8;�0:5 6 y 6 �0:1g (bottom) and show that their sum equals to the influx at the fx ¼ 0g boundary. In Fig. 10, the fluxes
are calculated using u, not u�rq. When t 2 ½0;1�, we see that the curve of the total outflux coincides with the curve
ð1� cosðptÞÞ=4 which is the total influx.
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